Telegram Group & Telegram Channel
Опишите процесс предобработки видеоданных для их использования в ML-моделях

🔹Предобработка на уровне кадров

Этапы предобработки видеоданных на уровне отдельных кадров включают:
▪️Сэмплирование, то есть выборка ключевых кадров для сокращения объёма данных.
▪️Приведение всех кадров к одинаковому размеру.
▪️Масштабирование и нормализация, то есть корректировка значений пикселей. Чаще всего нормализация осуществляется для приведения значений к диапазону [0, 1] или [-1, 1].

🔹Видеоэнкодеры

▪️Обработка видео целиком — с помощью 3D-свёрточных сетей (3D-CNN) или трансформеров. Эти модели захватывают как пространственные, так и временные зависимости между кадрами. Такой метод более ресурсоёмкий, но позволяет модели лучше улавливать динамику видеоряда.
▪️Обработка отдельных кадров — каждый кадр обрабатывается отдельно для получения эмбеддингов, которые затем агрегируются (например, с помощью усреднения или рекуррентных сетей). Этот подход быстрее, но может потерять часть информации о временных зависимостях.

#машинное_обучение



tg-me.com/ds_interview_lib/607
Create:
Last Update:

Опишите процесс предобработки видеоданных для их использования в ML-моделях

🔹Предобработка на уровне кадров

Этапы предобработки видеоданных на уровне отдельных кадров включают:
▪️Сэмплирование, то есть выборка ключевых кадров для сокращения объёма данных.
▪️Приведение всех кадров к одинаковому размеру.
▪️Масштабирование и нормализация, то есть корректировка значений пикселей. Чаще всего нормализация осуществляется для приведения значений к диапазону [0, 1] или [-1, 1].

🔹Видеоэнкодеры

▪️Обработка видео целиком — с помощью 3D-свёрточных сетей (3D-CNN) или трансформеров. Эти модели захватывают как пространственные, так и временные зависимости между кадрами. Такой метод более ресурсоёмкий, но позволяет модели лучше улавливать динамику видеоряда.
▪️Обработка отдельных кадров — каждый кадр обрабатывается отдельно для получения эмбеддингов, которые затем агрегируются (например, с помощью усреднения или рекуррентных сетей). Этот подход быстрее, но может потерять часть информации о временных зависимостях.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/607

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That strategy is the acquisition of a value-priced company by a growth company. Using the growth company's higher-priced stock for the acquisition can produce outsized revenue and earnings growth. Even better is the use of cash, particularly in a growth period when financial aggressiveness is accepted and even positively viewed.he key public rationale behind this strategy is synergy - the 1+1=3 view. In many cases, synergy does occur and is valuable. However, in other cases, particularly as the strategy gains popularity, it doesn't. Joining two different organizations, workforces and cultures is a challenge. Simply putting two separate organizations together necessarily creates disruptions and conflicts that can undermine both operations.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA